Excess volumes and excess viscosities of binary mixtures of cyclohexane + picoline

D. Blasco, C. Lafuente, J. Santafé, F.M. Royo and J.S. Urieta *

Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza 50009 (Spain)

(Received 25 February 1993; accepted 20 March 1993)

Abstract

The densities and viscosities of binary mixtures of cyclohexane + picoline have been measured at 298.15 and 313.15 K over the whole composition range. From these, excess volumes $V^{\rm E}$, excess viscosities $\eta^{\rm E}$ and excess energies of activation for viscous flow $G^{*{\rm E}}$ have been calculated. $V^{\rm E}$ is positive and both $\eta^{\rm E}$ and $G^{*{\rm E}}$ are negative. These results are consistent with the self-association of picolines and the non-polar character of cyclohexane, which produces the dissociation of the picolines.

INTRODUCTION

This paper is a continuation of previous work [1-3] in which we showed how the introduction of a heteroatom in an aromatic ring influences the interaction of the molecule with benzene or cyclohexane molecules.

Several properties of mixtures of cyclohexane with isomeric picolines have previously been investigated [1, 4, 5]. In this paper the values of excess volumes $V^{\rm E}$, excess viscosities $\eta^{\rm E}$ and excess energies of activation for viscous flow $G^{*{\rm E}}$ are reported for binary mixtures of cyclohexane + picoline at 298.15 and 313.15 K.

EXPERIMENTAL

Materials

The liquids used were cyclohexane (Fluka; better than 99.5 mol%) α -picoline (TCI; better than 99 mol%), β -picoline (Aldrich; better than 99 mol%) and γ -picoline (TCI; better than 99 mol%). No further purification was attempted.

^{*} Corresponding author.

Densities ρ , and viscosities η of pure compounds at 298.15 K and comparison with literature data

Component	$ ho/(\mathrm{gcm^{-3}})$		$\eta/(cp)$	
	This paper	Ref. 6	This paper	Ref. 7
Cyclohexane	0.77371	0.77375	0.8997	0.8936 *
α -Picoline	0.92963	0.93981	0.7703	0.7602 °
β -Picoline	0.95232		0.8960	
γ-Picoline	0.94900		0.8628	

^a Interpolated value.

Table 1 shows the experimental values of density and viscosity for the pure components at 298.15 K compared with those found in the literature. Densities were taken from Ref. 6 and viscosities from Ref. 7, using the suggested interpolation equations.

Measurements

Densities were measured by means of an Anton Paar DMA-58 vibrating tube densimeter. Calibration was carried out with deionized doubly-distilled water and dry air. The uncertainty of density measurements was $\pm 1 \times 10^{-5}$ g cm⁻³.

The viscosities of the pure components and of the mixtures were determined using a Ubbelhode viscosimeter with a Schott-Geräte automatic measuring unit model AVS-440. The accuracy of the time flow measurement is $\pm 0.01\%$. A thermostatically-controlled bath (constant to ± 0.01 K) was used. Mixtures were made by mass.

RESULTS AND DISCUSSION

The excess thermodynamic functions were calculated from our density and viscosity measurements with the equations

$$V^{\rm E} = x_1 M_1 (\rho^{-1} - \rho_1^{-1}) + x_2 M_2 (\rho^{-1} - \rho_2^{-1})$$
⁽¹⁾

$$\boldsymbol{\eta}^{\mathrm{E}} = \boldsymbol{\eta} - (\boldsymbol{x}_1 \boldsymbol{\eta}_1 + \boldsymbol{x}_2 \boldsymbol{\eta}_2) \tag{2}$$

$$G^{*E} = RT \left| \ln vM - (x_1 \ln v_1 M_1 + x_2 \ln v_2 M_2) \right|$$
(3)

TABLE 1

Excess volumes V^{E} of the binary mixtures cyclohexane(1) + a picoline(2) at 298.15 and 313.15 K

<i>x</i> ₁	$V_{\rm E}/({\rm cm}^3{ m mol}^{-1})$	<i>x</i> ₁	$V^{\mathrm{E}}/(\mathrm{cm}^3 \mathrm{mol}^{-1})$	<i>x</i> ₁	$V^{\mathrm{E}}/(\mathrm{cm}^3 \mathrm{mol}^{-1})$			
Cyclohexane + α -picoline at 298.15 K								
0.0890	0.1356	0.4012	0.5855	0.6981	0.6677			
0.2100	0.3305	0.5031	0.6617	0.8073	0.5501			
0.3068	0.4735	0.6029	0.6995	0.8860	0.3937			
Cyclohexa	Cyclohexane + β -picoline at 298.15 K							
0.0877	0.1151	0.4021	0.4954	0.6994	0.5652			
0.2127	0.2862	0.5007	0.5665	0.8087	0.4776			
0.3025	0.3945	0.6003	0.5906	0.8890	0.3458			
Cyclohex	ane + γ -picoline at	298.15 K						
0.0951	0.1269	0.4031	0.5191	0.7003	0.5980			
0.2074	0.2805	0.5002	0.5880	0.8165	0.4923			
0.3017	0.4123	0.5994	0.6230	0.8909	0.3503			
Cyclohex	ane + α -picoline at	313.15 K						
0.0972	0.1528	0.4051	0.5949	0.7102	0.6834			
0.2093	0.3295	0.5029	0.6807	0.8043	0.5726			
0.3070	0.4815	0.6046	0.7129	0.8929	0.3840			
Cyclohexane + β -picoline at 313.15 K								
0.0865	0.1080	0.4021	0.4991	0.7026	0.5926			
0.1995	0.2680	0.5006	0.5731	0.8094	0.4985			
0.2984	0.3939	0.6006	0.6083	0.8914	0.3524			
Cyclohexane + γ -picoline at 313.15 K								
0.0994	0.1290	0.3984	0.5195	0.7174	0.6025			
0.2092	0.2858	0.4997	0.5952	0.8161	0.4998			
0.3002	0.4084	0.5992	0.6351	0.8903	0.3580			

where M_1 and M_2 are the molecular masses of the components, ρ , ρ_2 and ρ_2 are the densities (g cm⁻³) of the mixtures and of the pure components, η , η_1 and η_2 are the absolute viscosities (cp) of the mixtures and of the pure components, v, v_1 and v_2 are the corresponding kinematic viscosities (m² s⁻¹), M is the molar mass of the mixture and x_i is the mole fraction of component *i* in the mixture.

Tables 2–4 show the excess thermodynamic functions for the three mixtures at both temperatures. Excess volumes and excess viscosities are graphically presented in Figs. 1–4.

The values of V^{E} , η^{E} and G^{*E} were fitted to the polynomial expression $Y = x_1(1 - x_1)[a_1 + a_2(2x_1 - 1) + ...]$ (4)

where a_1, a_2 , etc. are adjustable parameters and x_1 is the mole fraction of cyclohexane. The values of the parameters a_i computed by the method of

TABLE 3

Excess viscosities η^{E} of the binary mixtures cyclohexane(1) + picoline(2) at 298.15 and 313.15 K

<i>x</i> ₁	$\eta^{\rm E}/({\rm cp})$	<i>x</i> ₁	$\eta^{\rm E}/({\rm cp})$	<i>x</i> ₁	$\eta^{\rm E}/(cp)$		
Cyclohexane + α -picoline at 298.15 K							
0.0997	-0.0429	0.3982	-0.1262	0.6988	-0.1411		
0.1992	-0.0735	0.4989	-0.1403	0.7981	-0.1238		
0.2999	-0.1046	0.5983	-0.1467	0.8986	-0.0794		
Cyclohexa	ne + β -picoline	at 298.15 K					
0.1037	-0.0408	0.3998	-0.1163	0.6980	-0.1270		
0.2009	-0.0704	0.5014	-0.1270	0.7990	-0.1089		
0.2992	-0.0967	0.5980	-0.1312	0.8984	-0.0726		
Cyclohexa	$ne + \gamma$ -picoline	at 298.15 K					
0.1011	-0.0379	0.3993	-0.1096	0.6970	-0.1216		
0.1974	-0.0686	0.4994	-0.1201	0.7990	-0.1038		
0.2990	-0.0938	0.5991	-0.1261	0.8981	-0.0718		
Cyclohexa	ne + α -picoline	at 313.15 K					
0.0957	-0.0270	0.4020	-0.0875	0.6996	-0.0967		
0.2031	-0.0532	0.5083	-0.0976	0.8003	-0.0831		
0.2993	-0.0725	0.6041	-0.1006	0.9002	-0.0530		
Cyclohexane + β -picoline at 313.15 K							
0.0971	-0.0261	0.3993	-0.0790	0.6976	-0.0856		
0.2024	-0.0495	0.5003	-0.0867	0.7959	-0.0741		
0.2959	-0.0653	0.6044	-0.0893	0.9005	-0.0470		
Cyclohexane + γ -picoline at 313.15 K							
0.0956	-0.0244	0.3997	-0.0765	0.7000	-0.0815		
0.2026	-0.0478	0.4996	-0.0834	0.7974	-0.0714		
0.2978	-0.0642	0.6019	-0.0857	0.8998	-0.0460		

least squares are shown in Table 5, together with standard deviations $\sigma(Y^{\rm E})$

$$\sigma(Y^{\rm E}) = \left[\sum \left(Y^{\rm E}_{\rm calc} - Y^{\rm E}_{\rm exp}\right)^2 / (n-p)\right]^{1/2}$$
(5)

where n is the number of experimental data and p is the number of parameters.

Our $V^{\rm E}$ results for cyclohexane + α -picoline are approximately 4% lower than those of Wóycicky and Sadowska [4]. The excess volumes are positive over the whole composition range and increase with increasing temperature. Maximum $V^{\rm E}$ values are slightly shifted towards higher concentrations of cyclohexane. $V^{\rm E}$ increases in the sequence β -picoline < γ -picoline < α picoline, although the values for β -picoline and γ -picoline are similar. The picolines are associated liquids and the addition of cyclohexane (which is

Excess energies of activation for viscous flow G^{*E} of the binary mixtures cyclohexane(1) + picoline(2) at 298.15 and 313.15 K

$\overline{x_1}$	$G^{*^{\mathbf{E}}}/(\mathrm{kJ}\mathrm{mol}^{-1})$	<i>x</i> ₁	$G^{*^{\mathrm{E}}}/(\mathrm{kJ}\mathrm{mol}^{-1})$	<i>x</i> ₁	$G^{*^{\mathrm{E}}}/(\mathrm{kJ}\mathrm{mol}^{-1})$			
Cyclohexane + α -picoline at 298.15 K								
0.0997	-0.1319	0.3982	-0.3905	0.6988	-0.4232			
0.1992	-0.2277	0.4989	-0.4322	0.7981	-0.3588			
0.2999	-0.3241	0.5983	-0.4468	0.8986	-0.2216			
Cyclohes	Cyclohexane + β -picoline at 298.15 K							
0.1037	-0.1116	0.3998	-0.3291	0.6980	-0.3609			
0.2009	-0.1961	0.5014	-0.3631	0.7990	-0.3073			
0.2992	-0.2712	0.5980	-0.3748	0.8984	-0.1998			
Cyclohez	$xane + \gamma$ -picoline at	298.15 K						
0.1011	-0.1064	0.3993	-0.3167	0.6970	-0.3483			
0.1974	-0.1939	0.4994	-0.3480	0.7990	-0.2932			
0.2990	-0.2680	0.5991	-0.3629	0.8981	-0.1983			
Cyclohez	xane + α -picoline at	313.15 K						
0.0957	-0.1091	0.4020	-0.3576	0.6996	-0.3851			
0.2031	-0.2166	0.5083	-0.3971	0.8003	-0.3237			
0.2993	-0.2959	0.6041	-0.4057	0.9002	-0.1995			
Cyclohexane + β -picoline at 313.15 K								
0.0971	-0.0929	0.3993	-0.2943	0.6976	-0.3236			
0.2024	-0.1794	0.5003	-0.3261	0.7959	-0.2789			
0.2959	-0.2401	0.6044	-0.3376	0.9005	-0.1742			
Cyclohexane + γ -picoline at 313.15 K								
0.0956	-0.0902	0.3997	-0.2913	0.7000	-0.3104			
0.2026	-0.1791	0.4996	-0.3189	0.7974	-0.2698			
0.2978	-0.2426	0.6019	-0.3274	0.8998	-0.1708			

non polar) disrupts the molecular order and dissociation of picolines and gives rise to a positive value of V^{E} .

The excess viscosities and excess energies of activation for viscous flow are negative and decrease in absolute value as the temperature is increased. Here also the minimum η^E and G^{*E} values are shifted in the same direction. Both η^E and G^{*E} increase in absolute value in the sequence γ -picoline $<\beta$ -picoline $<\alpha$ -picoline. There is a inversion in the order for β -picoline and γ -picoline compared with the V^E sequence although the values for these last mixtures are still approximately the same. The values of η^E and G^{*E} can also be interpreted in the same way as the V^E values. According to Fort and Moore [8] this viscosity behaviour corresponds to systems in which there is an associated component and in which solute-solvent complexes are not formed or have low stability. According to Meyer et al. [9] negative values of G^{*E} correspond to the existence of

0.4

0.2

0.00

0.20

0.80

0.60

^{1–} in cm⁵ mol⁻¹

Coefficients a, of Eq. (4) and standard deviations σ determined by the method of least squares

Function	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	σ			
Cyclohexane + α -picoline at 298.15 K								
$V^{\rm E}/({\rm cm}^3{\rm mol}^{-1})$	2.6530	1.1505	0.2614	0.3933	0.0029			
$\eta^{\rm E}/(cp)$	~0.5609	-0.2149	-0.1636	-0.0712	0.0016			
$G^{*^{\mathrm{E}}}/(\mathrm{kJ} \mathrm{mol}^{-1})$	~1.7299	-0.6014	-0.3113	-0.0609	0,0040			
Cyclohexane + β -pic	coline at 298	.15 K						
$V^{\rm E}/({\rm cm}^3 {\rm mol}^{-1})$	2.2421	0.9572	0.3651	0.5348	0.0048			
$\eta^{\rm E}/({\rm cp})$	-0.5078	-0.1596	-0.1568	-0.1059	0.0009			
$G^{*E}/(kJ mol^{-1})$	-1.4499	-0.4895	-0.3560	-0.2219	0.0018			
Cyclohexane + γ -pic	coline at 298.	15 K						
$V^{\rm E}/({\rm cm}^3{\rm mol}^{-1})$	2.3551	1.0776	0.3029	0.4613	0.0034			
$\eta^{\rm E}/(cp)$	~0.4829	-0.1447	-0.1753	-0.1206	0.0013			
$G^{*^{E}}/(kJ mol^{-1})$	-1.3976	-0.4235	-0.4001	-0.2844	0.0030			
Cyclohexane + α -pic	coline at 313	.15 K						
$V^{\rm E}/({\rm cm}^3 {\rm mol}^{-1})$	2.7098	1.2671	0.2759	0.2772	0.0029			
$\eta^{\rm E}/(\rm cp)$	-0.3876	-0.1355	-0.0998	-0.0611	0.0002			
$G^{*E}/(kJ \text{ mol}^{-1})$	~1.5794	-0.5098	-0.2670	-0.1495	0.0011			
Cyclohexane + β -picoline at 313.15 K								
$V^{\rm E}/({\rm cm}^3{\rm mol}^{-1})$	2.2892	1.1040	0.4056	0.4768	0.0016			
$\eta^{\rm E}/({\rm cp})$	-0.3462	-0.1066	-0.0994	-0.0550	0.0003			
$G^{*^{\mathrm{E}}}/(\mathrm{kJ} \operatorname{mol}^{-1})$	-1.3026	-0.4513	-0.3096	-0.1614	0.0010			
Cyclohexane + γ -picoline at 313.15 K								
$V^{\rm E}/({\rm cm}^3{\rm mol}^{-1})$	2.3898	1.1586	0.2780	0.4006	0.0019			
$\eta^{E}/(cp)$	-0.3334	-0.0906	-0.0981	-0.0833	0.0003			
$G^{*E}/(kJ mol^{-1})$	-1.2752	-0.3623	-0.3091	-0.2756	0.0013			

solute-solute association like that mentioned for picolines. This association is also confirmed by the positive excess enthalpy for these mixtures [1].

ACKNOWLEDGEMENT

The authors are grateful for financial assistance from the Diputación General de Aragón (Project PCB 5/90).

REFERENCES

- 1 D. Diez, B. Ruiz, F.M. Royo and C. Gutiérrez Losa, J. Chem. Thermodyn., 17 (1985) 371.
- 2 E. Aznar, B. Ruiz and C. Gutiérrez Losa, J. Chem. Thermodyn., 17 (1985) 1121.
- 3 T. Sancho, F.M. Royo, J.S. Urieta and C. Gutiérrez Losa, J. Chem. Thermodyn., 22 (1990) 1171.
- 4 W. Wóycicky and K.W. Sadowska, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 16 (1968) 147.

- 5 T. Murakami, S. Murakami and R. Fujishiro, Bull. Chem. Soc. Jpn., 42 (1969) 35.
- 6 J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Elsevier, Amsterdam, 1965.
- 7 D.S. Viswanath and G. Natarajan, Data Book on The Viscosity of Liquids, Hemisphere, New York, 1989.
- 8 R.J. Fort and W.R. Moore, Trans. Faraday Soc., 62 (1966) 1112.
- 9 R. Meyer, M. Meyer, J. Metzger and A. Peneloux, J. Chim. Phys. Phys. Chim. Biol., 68 (1971) 406.